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Abstract

The spectral analysis of a series of equally spaced samples of a time-
stationary process becomes difficult when samples are missing or sizable data
gaps occur within the interval of interest. A linear prediction algorithm can
be used to fill in the missing data with estimates that are spectrally con-
sistent with the data that are observed. Simulated and practical radar
examples demonstrate an improvement in resolution and a reduction of sidelobe
interference levels. Computer programs are provided which accomplish the

extrapolation and interpolation for complex data.
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A. Problem Definition

When a spectral transformation of a sampled process is performed, one
must account for any samples that are missing. Assigning a value of zero to
missing data prior to Fourier transformation, for example, introduces false
frequencies and greatly increases sidelobe levels. Clearly, an interpolation
scheme is needed that can cope with missing data and, at the same time, will
not degrade the spectral information contained in the data that are observed.

Occasional missing samples, well separated from each other, can be
estimated with simple interpolation procedures (polynomial or parabolic fits,
spline fits, etc.). However, data may be missing in such quantity that con-
ventional interpolation is inadequate; data gaps longer than the periods of
the sinusoidal components in the data cannot be easily bridged with simple
functions. A more sophisticated approach becomes necessary, and the use of a
data-adaptive linear prediction filter is one feasible alternative.

In radar data processing, missing data or data gaps may occur for a
variety of reasons:

(a) hardware fails to transmit pulses or receive echoes properly;

(b) radar transmits when it should be receiving echoes (range

eclipsing);

(c) resources are saturated by many targets that must be watched

simultaneously (panic);

(d) burst waveforms are purposely silent between bursts;

(e) poor signal-tc-noise makes detections sporadically unreliable.
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In any case, the missing samples (in these examples, complex samples with
amplitude and phase) must be filled in before Doppler processing can be
accomplished.

B. Description of the Method

The use of a linear prediction filter to extend a finite complex data
set before Fourier transformation was first proposed and described by Bowling
(1977). Applving this original algorithm, Tomlinson and Ackerson (1978)
demonstrated clutter and sidelobe reduction in the Doppler processing of a
train of radar pulses.
In the application of interest here, the prediction algorithm is used to
predict estimates of missing data by extrapolating from observed data. For
example, suppose an observation interval contains randomly missing samples and
gaps. The procedure is as follows:
(1) Locate and designate the missing samples to be estimated.
(2) Find the longest continuous span of data within which
there are no missing samples.

(3) Calculate an N-point linear prediction filter from the
longest continuous span of data found in step (2).

(4) Calculate an estimate of each missing sample immediately
to the left and to the right of the longest continuous
span of data (a total of two estimates, one on each side).

(5) Return to step (2) until all missing data have been esti-

mated. Note that estimates from step (4) are to be treated

as observations on an equal basis with the original data.
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That is, the longest continuous span of data is increasing

in length as estimates fill in the holes, one by one, to

the left and to the right.
When the longest continous span of data finally terminates at one of the
endpoints of the observation interval, estimates continue to be made toward
the other endpoint until all missing points have been filled in. The length
of the prediction filter may remain a constant, or vary according to the
current length of the longest span of data.

€. Simulated Examples

A simple example shows the improvement in the power spectrum of a data
set containing missing samples and gaps.

The real and imaginary parts of a sampled sum of three complex sinusoids
are shown in Figs. 1l(a,b). No noise has been added and no samples are missing.
Figure 1l(c) is the true power spectrum calculated with a standard FFT. No

weighting function has been used.

Now if samples are randomly zeroed out and data gaps are introduced as
shown in Figs. 2(a,b), the power spectrum in Fig. 2(c) shows increased side-
lobe levels and false frequencies, both caused by processing without estimating
the missing data.

Figures 3(a,b) show the data set after the linear prediction algorithm is
applied, with the power spectrum shown in Fig. 3(c). Not only do Figs. 1l(a,b)
overlay with 3(a,b) almost exactly, but their respective power spectra are

indistinguishable.
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Another simple example demonstrates the performance of the linear pre-
diction algorithm when data gaps occur periodically, such as is the case for a
radar burst waveform.

Figures 4(a,b) represent the process of Figs. 1l(a,b) for which three data
gaps are present. Indeed, half of the data are missing from the observation
interval, and the gaps are longer than any period exhibited in the data. The
power spectrum of Fig. 4(c) is a very poor estimate of the true spectrum
(Fig. 1l(c)) because no gaps have been filled in. Transforming only one of the
short spans of observed data gives a power spectrum with limited resolution,
as shown in Fig. 4(d).

However, upon using the prediction algorithm on Figs. 4(a,b), we obtain
Figs. 5(a,b) and the power spectrum in Fig. 5(c), which is an excellent esti-
mate of the true spectrum.

In this case, the prediction algorithm has acted as a synergistic device
that, by linking short pieces of data together with spectrally consistent
estimates, allows a spectral transform to be performed over an effectively
longer piece of data. The whole, then, has more resolving power than any of
its parts.

It should be pointed out that the data gaps need not be periodic or equal
in length in order for the prediction algorithm to fill them in.

D. Radar Example

Radar is often used to identify targets from the time history of the
velocity spectrum of the target's motion about its center of mass. A series

or burst of radar pulses is Fourier analyzed, and the target's velocity




spectrum is observed. If not accounted for in the processing, missing pulses
can introduce false velocity components and lead to an incorrect character-
ization of the target.

For example, Fig. 6(a) shows the evolution of the velocity spectrum of a
tumbling object for which missing data and data gaps exist and are set to zero
in the radar pulse train. No estimation for the missing pulses has been done.
It is therefore not clear if the velocities indicated are actually from the
target or are an artifact of the missing data. Figure 6(b) shows the evolu-
tion of the same velocity spectrum upon using the prediction algorithm before
Fourier transformation. The disappearance of some of the velocities cleans up
the spectral history and indicates which velocity components actually charac-
terize the target.

E. Limitations of the Method

Implicit in the use of a linear prediction filter is the assumption that
the data from which the filter is derived are coherent. The process being
sampled must be approximately stationary during the observation interval which
is being analyzed and within which the missing data and data gaps may occur.

Also, the prediction filter works best when the spectral components are
approximately pure tones, confined to locally narrow bandwidths spaced within
the Nyquist bounds of the spectral transform domain.

F. Computer Codes

Appendix I lists three self-contained subroutines that accomplish the

method described in Section B. GAPFIL, the driving subroutine, calls COEFF




and LNPRED, which calculate orediction filter coefficients and perform linear
predictions, respectively. Although the code is designed for complex data,
purely real data can be treated by setting the imaginary components to zero
before calling GAPFIL. See Bowling (1977) for a more detailed description
of the linear prediction procedure.
G. Summary

This paper proposes the use of a linear prediction algorithm to fill in
missing data and data gaps that may occur within an observation interval over
which a spectral transform is to be made. False frequencies and sidelobe
interference, which are artifacts of the missing samples, can be surpressed or
eliminated by replacing the missing samples with estimates that are spectrally
consistent with neighboring observed data. Large gaps can be smoothly bridged

that otherwise could not be satisfactorily interpolated by simpler schemes.

— W —— e e I S ——




2T T i i T s i T T v
S T
B . 1 |
0k i ‘ 4 0}
, ‘ ‘
st} ] "
- |
= o i \ =]
2 - E
= oF / | ] = or
a H | a
= e | =
< { | / =
5“ 3! :
5 b/ ) B 5 !
5 | | i f |
i ] ! ‘
0 | f | 1 -k | ;
. 1l | |
! \ i
_15;: ;!“ ~ -15 = |
~ (a) (b)
) S & gl I . 5 1 I 10 Il £ E
5 10 15 20 % 30 5 10 15 20 > 30
TIME TIME
10 T T T T
3 4
8 E
= 3
. °F ]
=
£ }
F 3
- 1
‘o 1
E | |
i : 4
= g 1
2k ‘\,l <
E (c) A
BV ] o
[\ sUENN} i % PR L AU IR SRS N b8 ¢ JaNay
0.4 0.2 0 0.2 0.4
FREQUENCY
Fig. 1. (a) Real part of the sum of three complex sinusoids; no samples

are missing.
no samples are missing.

T ———

—

(b) Imaginary part of the sum of three complex sinusoids;
(c) Power spectrum of 1(a,b).

- —— e




AMPLITUDE

T ——— P — - -

2 i i T T T T 1 7] 2 [y T T T T T .
-3-20178
15 - 15 .
0} ] R 10| 3
sk sk ]
s A A | = |
'\ = v
o?\J -4 . —_— E . S o |~ e ’ o ’ 3
= J |/
V ' = 1 v
t
S | R 5 ]
s r !
10 | 4 10} =
!
-5 1 15 F { H
(a) i (b)
G 3T | i 1 1 I § N 2 L 1 n 1. ! 1l
5 10 15 20 25 30 5 10 15 20 5 30
TIME TIME
T T T 5 7 T T T T T
(c)
6 .
5 B
4+ [ ]
= |
: |
bl it e
I |
\ )
: i
2F | 111 |-
I \ "Ji[ \y‘”t
f\ | \ i “ ||
B o/
N/ \ {1 |
;\/ \f// y | _r’ 1 lJ | ‘.J ' ‘v’ ‘
\\‘ y : ‘-) : i
0 HJ Llll bl Ll LAl 1 LLLLLA .| Lil 1
-0.4 0.2 0 0.2 0.4
FREQUENCY
Fig. 2. (a) Real part of Fig. 1 with randomly missing data and data gaps.
(b) Imaginary part of Fig. 1 with randomly missing data and data gaps.
(c) Power spectrum of 2(a,b).
8
T RS




T

?Of' T T T T T | g 20 T T T T T —- ~—
~3-20119
3
15 4 S 4
|
wF . w0} §
5h 1 5 B
= e 4 = oF 7
a b & i
= = s
S ] oy v :
S/ 1 Sk 1 -
. | ! 1
1
10 ! { -10 | ! ( 4
L ! \ | |
!
oY ’ 4 15 i e
(a) i (b
G ot 1 1 1 1 1 ! il of 1 1 Ll L 1 =
5 10 15 20 5 30 S 10 15 20 % 30
TIME TIME
T T T T T T 139 T T
SE
-
oF
= - \
= o 3
2 - i
- |
- | é‘\ i
e t Il | I
- q\ [ |
2F | | 4
P (c) ’ hi “1;: "
= A N /1
o I : \ {ff | ;\.-1
N \/ Y | | TRTATAVATA \ AT i Vv
03(‘;'1\ ( Lt ity 1V'Au‘L1J__'
-0.4 0.2 0 0.2 0.4
FREQUENCY

Fig. 3. (a) Real part of Fig. 2 after application of the linear prediction
algorithm. (b) Imaginary part of Fig. 2 after application of the prediction
algorithm. (c) Power spectrum of 3(a,b).

..... e rp—————————
? we




20 Frey T e T = e 3 20 i A E i = T .
|
B 1 15} 3
i 3
10 0} 4
L £ 1 -
5t B 5k “ -4
g )E | A g s | I
5 of — sl b | /4
2 E/ v - i x |
_5.:/ _5:Z .
| 1
-10fF f -IOSy' / : .
N v. 1 '
{
-5 - -5k -
(a) (b)
200, ;14 i Y 1 L T P 20 \ : 1 ik 1 Ll .
5 10 15 20 5 30 5 10 15 20 % 30
TIME TIME
5 Ty ] A Al T T T T [ T T T T T T Ty T L ARS
(c) {d)
E ' L
8 \.25[ / \ -
‘:_ [
- i L Loof [ 4
| v .| - |
| |1 | \
3k {t 4\ [ C / \ / \
o = [ ) | ! a / 1
i 2 | 4 o 075 -
LN I E ] /
2 WU\;? i\;— - ‘ 1
H \ } bf 0s0f N\ 1
g i \M“M ﬂ‘ H,L o i ( “f : s § } 4
: PN DGt At T i / /
ATV IR TEAY A IR A R
i 'J/V R FAAS L i / :
SN FRTRN VNS ALl Ll LLLLLLLL Lid H “11“14-...““1“'ujuxiuxmu_hnuunul
-0.4 -0.2 0 0.2 0.4 -0.4 0.2 0 0.2 0.4
FREQUENCY FREQUENCY
Fig. 4. (a) Real part of Fig. 1 with data gaps. (b) Imaginary part of Fig. 1

with data gaps.

(c) Power spectrum of 4(a,b).

central short data span in 4(a,b).

e g

10

(d) Power spectrum of the




4

anietas (- P oA

m Al : 4 T T . T ] 20 - T T — T T ' g
-3-20181
15 5 15 r 4
]
' ]
10 - e 0F R
5 L y 5k a
: s
S Of R S of 4
o a
= =
< =
Sk s b Sr 1
¢y { y !
{ : |
-10 k R 10 # , 4
-15F ! + 15k -
(a) (b)
20 1 1 1 L 1 1 7 0 1 L 1 ik 1 1
5 10 15 20 % 30 5 10 15 20 % 30
TIME TIME
T T T T | SRS T T g
‘ E:
|
8 % | g
|
ofF b
|
]
- . p
g

afb I 3
S lJ
|

2 i
(c) " 1, 1 W
0 A
UL \. VAW WM“ (v
2.4 0.2

FREQUEMIY

Fig. 5. (a) Real part of Fig. 4 after gaps are filled in with the linear
prediction algorithm. (b) Imaginary part of Fig. 4 after gaps are filled
in with the prediction algorithm. (c) Power spectrum of 5(a,b).

11

-




TIME —

Fig. 6. (a) Doppler history of tumbling object when missing data and data
gaps are not accounted for. (b) Doppler history after missing data are
filled in with the linear prediction algorithm.
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APPENDIX COMPUTER CODES

Listings for subroutines:

1) GAPFIL - driving program

2) COEFF - filter coefficient calculations

3) LNPRED - estimation by linear prediction
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SUBROUTINE GAPFPIL (XREAL, XIMAG, NPTS, X, A, PN, AA, B1, B2)

COMPLEX X, A, AA, B1, B2, ARRAY
DIMENSION X (1), A(1), XBREAL(1), XINA5(1)
DIMENSION PM (1), AA(1), B1(1), B2(1)
DIMENSION ARRAY (256), MISS (128)

INPOTS ARE: XREAL,XIMAG,NPTS

OUTPUTS ARE XREAL,XIMAG,X,A

THE ARGUMENTS OF THIS SUBROUTINE ARE:

XREAL (NPTS)= ARRAY CONTAINING THE REAL PART OF THE DATA
XIMAG (NPTS)= ARRAY CONTAINING THE IMAGINARY PART OF THE DATA
NPTS= THE NUMBER OF DATA POINTS (INCLUDING MISSING POINTS)

Y (NPTS)= CONPLEX ARRAY OF DATA POINTS OSED IN PREDICTION

A (NCOEPP)= COMPLEX ARRAY OF PREDICTION COEFPICIENTS GENERATED

WITHIN THIS SUBROUTINE (MCOEFF WILL NOT EXCFED NPTS/4)

PH(NCOEPF) = ARRAY OF ERROR POWER HISTORY AS PILTER IS BOILT
AA (NCOEFF) ,B1 (NPTS) ,B2 (NPTS) = WOKK ARRAYS

IN THE ABOVE DESCRIPTION, THE MININOM SIZES OF THE ARRAYS

AS USED IN THIS SUBROUTINE ARE SPECIFIED

THE LONGEST SPAN OF CONTIGUOUS DATA IS FIRST LOCATED WITHIN THE
INTERVAL NPTS. THEN THE NISSING DATA IN THE ADJACENT SANMPLE
POSITIONS AFE PREDICTED USING A LINEAR PREDICTION ALGORITHAN.
AS MISSING POINTS AND GAPS ARE FILLED IN, THE BASIS PROM WHICH
THE PREDICTIONS ARE BEING MADE INCREASES IN LENGTR; NCOEFF
THE LENGTH CP THE PREDICTION FILTER, IS NOT ALLOWED TO EXCEERD
NPTS/4. THE DATA ARRAYS ARE RETURNED WITH THE GAP2S AND
MISSING POINTS FILLED IN.

SEE LINCOLN REPORT RMP-122 FOP DESCEIPTION OFP LINFAR PREDICTION

IF NPTS IS GREATER THAN 256 , INCREASE DIMENSION OF
" ARRAY' TO ACCOMODATE
IF MORE THAN 128 POINTS ARE MISSING, INCFEASE DIMENSION OF 'AISS'.

- —— - ————— - — - - — - —— - — -~ — - - - - - .- - - - -

STEP 1 : IDENTIFY MISSING DATA.

MISSING DATA APE THOSE CONSIDERED TO HAVE VALUES OF ZEKO. IF

THIS CRITERION IS NOT APPROPRIATE FOR YOUR APPILICATION, THEN

YOJ WILL HAVE TO REWRITE STEP 1. NOMISS IS THE NUMRFR OF

MISSING DATA PUINTS, AND MISS(J) IS THE LOCATION OF THE JTH

MISSING POINT. THYUS, MISS(J) CAN HAVE ANY VALUE BETWEEN 1 AND NPTS.

14




20

40

I1 =0
J=20
I = et

X(I) = CAPLX (XREAL (I),XIARAG(I))

IF (XIRPAL(X).B8Q.0.0.88D.XTHAG (I).EQ.0.0) J=J+1

IF (XREAL(I).BEQ.0.0.AND.XINAG(I).EQ.0.0) HISS (J)=I
IP {I.LT.NPTS) GO TO 9

NONISS = J

IF (MOMISS.EQ.0) RETORN

STEP 2 : SEARCH POR LONGEST SPAN OF CONTINUOUS DATA,
AND GENERATE 2 NOMBERS (L1, L2) CHARACTERIZING THE SPAN.

L1 =0
L2 = mISS (1)
=1
2 =1

MAX= NISS(1)
IP (NOMISS.EQ.1) GO TO 30
DO 20 J =2, NOMISS

JDIP = NMISS(J)-MISS(J-1)
IF (JDIF.LE.NAX) GO TO 20
N1 = J-1

n2 =J

L1=RISS (M1)

L2=NISS (42)

MAX= JDIFP

CONTINVE

JDIP = NPTS-MISS (NOMISS)
IF (JDIF.LE.MAX) GO TO 34
NOMISS

NONISS#+)

BISS (M1)

NPTS ¢ 1

=
-
L]

| o4
-
Wonow

STEP 3 : DEFINE NUMBER OF LINEAR PREDICTION COEFFICIENTS,
AND PERFORM PREDICTION.

NCOEPF = (L2-L1)/2

IF (NCOBFP.LT.1) NCOEBFF=2
IF (NCOEFF.GT. (NPTS/4)) NCOEFF=(NPTS/W)
I1 = L1

I2 = L2-1

J =0

DO 40 I = 71, 12

J = Je

AKRAY(J) = X(I)

MP = J

MPP2 = J¢2

15
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C
C
C

s

CAL
CAL

STE

Ir
IF
IF

IF
Ir
Ir

LR
IP
Ir
A2
Ir
Ir
Ir
GO

50 RET
END

L COBFP (NP, ARRAY, NCOBFP, A, PH, PO, AA, B1, B2)

L LEPRED(RP, 8PP2, ARRAY, NRCOBFP, 1)

P & : RE-BSTABLISH REAL AND INMAGINARY ARRAYS.

(L1.GT.0) XREAL(L1) = REAL (ARRAY(1))
(L1.GT.0) XIMAG(L1) =ATINAG (ARRAY(1))
(L1.GT.0) X(L1) = ARRAY (1)

(L2.LE.NPTS) XREAL(L2) = REAL(ARRAY (MPP2))
(L2.LE.¥PTS) XINAG(L2) =AINAG (ABRAY (8PP2))
(L2.LE.NPTS) X(L2) = ARRAY (APP2)

= A1-1

(R1.GE. 1) L1=RISS(A1)

(81.LT.1) L1=0

= B2¢1

(82.LE.NONISS) L2=HISS(H2)

(82 .GT.NOHISS) L2=EPTSe1
(41.LT.1.AND.B2.GT.NOBISS) GO TO 50
T0 34
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SUBROUTINE COEFF (NPTS,X,NCOEFP,A,PN,PO,AA,B1,B2)

THIS SUBROUTINE CALCULATES THE COMPLEX BURG COEPPICIENTS

ALGORITHMS DESCRIBED BY ANDERSON (GEOPRYSICS,VYOoL 39,FEB.
TO THE CASE OF A COMPLEX SERIES.

PROGRANNED BY S.B. BOWLING, MIT-LINCOLF LABORATORY, SEPT.

annNnnonnnNnn

COMPLEX X,A,AA,B1,B2,XNOH,DEN,THO
DIMENS ION x(1),1(1) AA(T) ., nv(t) B2(1) ,PA(1)
TWO=CMPLX(2.0,0.0)
P0=0.0
po 10 IT=1,NPTS
DUMMY= X (IT)*CONJG (X(IT))
10 PO= PO+ DUMMY
PO= PO/FPLOAT(NPTS)
NN1=NPTS-1
B1(1)=X(1)
B2 (NM1) =X (NPTS)
DO 20 IT=2,NM1

B1(IT)=X(IT)
ITRI1=IT-1
20 B2 (ITM1)=X(IT)
DO 50 M=1,HCOEPP
AN 1=R0-1
NMM=NPTS-H
IF(N .BEQ. 1) GO TO 25
DO 21 IT=1,MN1
21 AA(IT) =A(IT)
DO 22 IT=1,NNN
B1(IT)= B1(IT)=-CONJG(AA (NN1))*B2(IT)
22 B2(IT)= B2(IT+1)-AA(NM1)*B1(IT+1)
25 XNOM=CMPLX (0.0,0.0)
DEN=CMPLX (0.0,0.0)
DO 30 IT=1,NHN
. XNOM=XNOM ¢ B2(IT)*CONJG(B1(IT))
30 DEN=DEN + B1(IT)*CONJG(B1(IT)) ¢ B2(IT)*CONJG (B2 (IT))
IP ( REAL (DEN) .EQ. 0.0) GO TO 35
A(N)= TWO* (XNOM/DEN)
GO TO 36
35 A(M)=CHPLX(0.0,0.0)
36 POWER=PO
IF(M .GT. 1) POWER=PA (N-1)
DUNMY=A (M) *CONJG (A (M) )
PH (M) =POWER* (1.0 - DUMNTY)
IF(M .EQ. 1) GO TO S50
DO 40 IT=1,mM1
40 A(IT)= AA(IT)-A(M)*CONJG (AA(N-IT))
50 CONTINUE
RETURN
END
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SUBROUTINE LNPRED (N1,N2,X, NCOEFP,A)

THIS SUBROUTINE LINBARLY BXTENDS THE CONPLEX DATA ARRAY 'IX'
FROM N1 POINTS TO N2 POINTS. THE ORIGINAL DATA IS CENTERED
IN AN ABRAY OF N2 ELEMENTS AND BOTH A FORWARD AND BACKWARD
EXTERSION ARE PERPORMED UNTIL THE TOTAL NUONBER OF POIRTS IS N2,

N1= ORIGINAL NUMBER OF POINTS IN ARRAY X

N2=NUMBER OF POINTS TO WHICH ARRAY X IS EXTEBDED

X= CONPLEX ARRAY OF DATA SAMPLES, DINENSION AT LEAST N2
NCOEFF= NUMBER OF PREDICTION FILTER COEFFICIEBTS

A= COMPLEX ARRAY OF FILTER COEPFICIENTS, DINENSION NCORFP

PROGRAMNED BY S.B. BOWLING, RIT-LINCOLN LABORATORY, SEPT. 1976.

COMPLEX X,A
DIMENSION X (1) ,A(1)

SET UP LIMITS FOR DO LOOPS

L1= N2/2 - N1/2

L2= N2/2 + R1/2
IF( ROD(N1,2) .EQ. 1) L2=L2¢1

SHIPT ORIGINAL DATA TO NMIDDLE OF ARRAY X

DO 100 I=1,¥1

J= N1 - (I-1)

K= L2 - (I-1)
100 X (K)=X(J)

DO FORWARD PREDICTION

N3= N2-L2
DO 200 I=1,N3
J= L2+1
X (J) =CMPLX (0.0,0.0)
DO 200 K=1,NCOEPF
200 X(J)= X(J) + A(K)*X(J-K)

DO BACKWARD PREDICTION

DO 300 I=1,L1
J= L1- (I-1)
X (J) =CMPLX (0.0,0.0)
DO 300 K=1,NCOEFFP
300 X (J)=X(J) + CONJG (A(K)) *X (J+K)

RETORN
END

18
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